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Experimental studies of the rheology of a simple liquid mixture during phase separation
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We report measurements of the effective viscosity and elastic shear modulus of the critical and two
off-critical mixtures of isobutyric acid and water in the process of phase separation under shear. All
three mixtures exhibit enhancements of the viscosity caused by the presence of concentration domains,
as has been suggested by Onuki [Phys. Rev. A 35, 5149 (1987)]. The critical mixture and an off-critical
mixture rich in isobutyric acid also possess significant elasticity during phase separation. Elasticity is ab-
sent in the case of a water-rich mixture. During phase separation of the critical mixture, we observe rap-
id decreases of the viscosity enhancement and the elastic shear modulus. This behavior is due to rapid
capillary-driven coarsening of the concentration domains, as we show in a detailed application of a
theory recently proposed by Doi and Ohta [J. Chem. Phys. 95, 1242 (1991)]. The off-critical mixtures ex-
hibit constant viscosity enhancements and, in the case that it is present, an elasticity that increases with
time. Some of these features can be understood by regarding the phase-separating off-critical mixtures as

dilute emulsions.

PACS number(s): 68.10.Et, 47.20.Hw, 64.60.Ht

I. INTRODUCTION

This paper is devoted to the topic of the stress present
in mixtures of simple liquids when they undergo a
separating transition under shear. Liquid mixtures un-
dergoing phase separation have been studied extensively
ever since it was recognized that, by exploiting the criti-
cal slowing down of dynamic processes near the conso-
lute point of two partially miscible liquids, experimenters
can make time-resolved studies of the kinetics of phase
transitions [1]. Highlights in this history of the subject
are, with respect to theory, the evaluation by Langer,
Bar-on, and Miller of the effects of nonlinearities in the
process of spinodal decomposition [2], which is the mode
of phase separation of a mixture with the critical compo-
sition, the reworking by Langer and Schwartz of the clas-
sical theory of nucleation and growth, which is the
phase-separation mode of off-critical metastable mixtures
in order to take critical slowing down into account [3],
and the recognition by Siggia of the crucial importance,
in fluid systems, of hydrodynamic interactions [4].
Noteworthy experimental efforts are the observation of
hydrodynamic effects during spinodal decomposition by
Chou and Goldburg [5], measurement of the cloud points
(metastability limits) of near-critical mixtures of How-
land, Wong, and Knobler [6], and the extensive studies of
the phase-separation kinetics of off-critical mixtures by
Wong and Knobler [7]. As a natural extension of earlier
work on the effect of shear flow on equilibrium critical-
point phenomena [8], in the mid 1980s theorists began to
consider phase separation under shear Theories of spino-
dal decomposition under shear predicted strongly aniso-
tropic growth of the domains of the new coexisting
phases, with the characteristic domain size in the flow
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direction increasing with a stronger time dependence
than the size in the direction perpendicular to the flow
[9]. Other theories predicted the suppression of the
phase separation of metastable mixtures under shears
strong enough to rupture the nucleating clusters, while
weaker shears might speed the process up by inducing
coalescence of clusters [10]. These topics are currently
being studied experimentally. Recent experiments per-
formed with mixtures of simple liquids have investigated
the effects of shear on spinodal decomposition [11] and
nucleation [12,13]. Shear effects on spinodal decomposi-
tion have also been studied in polymer [14] and micellar
[15] solutions.

Under typical experimental conditions, the size of the
concentration domains during the phase separation of
liquid mixtures is of the order of 1-10 um. Onuki has
pointed out that structure on such a mesoscopic length
scale is small enough still to be treated by continuum
mechanics, but large enough to introduce significant
stresses which would not be present in the homogeneous
equilibrium mixture [16]. Thus the conceptually clean
binary mixture of simple liquids can furnish an example
of a rheologically complex fluid. Onuki’s theory predicts
that a liquid mixture undergoing phase separation under
a steady shear tends toward a stationary state in which
domain growth is balanced by the breaking up of large
domains by the shear. The mechanical energy expended
in the deformation of the domains against the capillary
forces due to interfacial tension is lost when the domains
break, so the continuous breaking of domains is macros-
copically equivalent to viscous dissipation. Onuki gave a
rough calculation of the effective viscosity An of the
domain-breakup process. Surprisingly, An can be
significant even though the interfacial tension is small
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near the critical point. The theory predicts An/ny~=~1,
where 7, characterizes the viscosity of the simple, homo-
geneous mixture without the effect of the domains.

Few experimental studies of the rheological behavior of
phase-separating liquid mixtures have been reported. As
far as we are aware, our preliminary report [17] and re-
cent short paper [18] report the only results obtained
with mixtures of simple liquids. We know of only one
other related experiment, namely a recently reported
measurement of extremely large viscosity enhancements
in a polymer mixture simultaneously undergoing phase
separation and gelation [19].

In this report, we describe measurements of the stress
in flowing, phase-separating liquid mixtures made by ob-
serving the motion of a macroscopic body suspended in
the mixtures. In the present work, the body is a disk that
executes free oscillations. The fact that the resulting
shear flow is oscillatory adds considerable complexity to
the problem, but it also allows us to observe another im-
portant rheological attribute of these systems, namely
viscoelasticity. A future paper will report the rheological
behavior we see when the mixtures are subjected to
steady shear flows imposed by a rotating cylinder.

This paper is organized as follows. Section II contains
a description of our apparatus, sample preparation, and
experimental procedure. Also included here is a full ac-
count of the working equation we use to calculate the
viscosity and elastic shear modulus of a viscoelastic fluid
from the measurable quantities that characterize the
disk’s motion. As far as we are aware, this material has
not appeared elsewhere in the literature. Our results and
analysis of experiments performed with a critical mixture
of isobutyric acid and water appear in Sec. III. These re-
sults have already been reported in a short paper [18].
Here we give a much more detailed account of the appli-
cation of a theory developed by Doi and Ohta to these
measurements [20]. We also give predictions of their
theory in regimes of shear rate and frequency not accessi-
ble with our viscometer. Section IV contains measure-
ments of two off-critical mixtures, one rich in isobutyric
acid and one rich in water. We compare the rheological
behavior of these mixtures with the behavior of ideal
emulsions. Our conclusions, including some speculative
discussion of two unresolved puzzles posed by our experi-
ments for off-critical mixtures, are the content of Sec. V.

II. EXPERIMENTAL DETAILS

A. Oscillating-disk viscometer,
sample preparation, and procedure

The measurements are made with an oscillating-disk
viscometer designed by Kestin and co-workers [21] and
previously used to measure the viscosity of liquid toluene
[22]. Figure 1 shows the instrument in an earlier
configuration in which a thin disk is positioned between
closely spaced fixed plates. In the present experiments,
we use a squatter disk of radius R;=25.41 mm and
thickness 22 =10.16 mm. Also, the spacing between the
fixed plates and the disk has been increased to about 7
mm, sufficient to allow us to neglect the effect of the

plates on the fluid velocity around the disk. The disk is
suspended from a torsion wire with a length of about 260
mm and a diameter of about 0.25 mm. The disk is made
of Hastelloy C-276 for resistance to corrosion. The sus-
pension wire is made of a 92%-Pt-8%-W alloy which
yields high reproducibility of the rest position and low
internal friction. The disk carries a small mirror on a
long, thin stem. The disk and the assembly which sup-
ports the suspension wire are contained within a pressure
vessel. The volume of the pressure vessel is about 1.3 I;
this entire volume is filled' with the fluid under study. A
window in the vessel wall near the base of the instrument
allows us to observe the disk’s motion by monitoring a
laser beam reflected from the mirror. We set the disk
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FIG. 1. The viscometer. The disk 3 is positioned between
two fixed plates 1 and 2. The torsion wire from which the disk
is suspended is carried by a column 10. A mirror 5 is attached
to the disk by means of a long cylindrical stem. The lower part
of the viscometer body 7 holds a sapphire window and its hous-
ing 6 and a thermowell 4 which contains a thermistor. The
upper part of the viscometer body 8 defines the cavity occupied
by the sample. The sample comes into contact with pressurized
nitrogen gas near the port at the top of the instrument. The
upper and lower parts are held together by a cap 9 which con-
tains a ring of bolts. The seal is made by an O ring. The
viscometer rests in a conical bearing 11 which allows us to set
the disk into motion by rotating the instrument through a small
angle.
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into motion by rotating the viscometer through a small
angle about an axis coincident with the suspension wire,
then returning the instrument to its original position after
a delay of about half of the disk’s oscillation period. In
the absence of a fluid (that is, when the vessel has been
evacuated), the disk oscillates with negligible damping at
its natural frequency w, set by its moment of inertia and
the stiffness of the suspension wire. The corresponding
period in vacuo Ty =2m/w, is 3.891 s at 25°C.

Good thermal stability near room temperature is re-
quired for these experiments. In order to thermostat the
viscometer, we have placed it in inside an insulated, air-
tight box. The air inside the box is circulated around the
instrument and through a chamber containing a liquid-
cooled heat exchanger and a heat source. Air-
temperature stability of 20 mK over a duration of several
hours can be attained. Because of the large thermal mass
of the viscometer, over such times its temperature
remains constant to within a few mK. In the experiment,
we vary the pressure at constant temperature; the exact
value of the temperature is not important as long as it
remains constant during the experiment. The liquid sam-
ple comes into contact with nitrogen gas near the top of
the pressure vessel. Simple techniques allow us to mea-
sure and control the gas pressure P over the range
0.1 <P <10 bar with an accuracy of 0.01 bar.

Concentration gradients can develop in liquid mixtures
close to the consolute point due to the enhanced effects of
sedimentation and thermal diffusion [23,24]. In order to
keep the concentration uniform, we stir the sample by
pumping it from the bottom to the top of the viscometer
through an external pump. This procedure is carried out
routinely, usually at intervals of several days or whenever
consideration of the reproducibility of the measured
viscosities suggests that the local concentration of the
sample in the vicinity of the disk may have changed.

In the case that the disk is surrounded by a viscous
fluid whose properties are constant in time, the free
motion of the disk is of the form

a(t)=agexp( —Awt )sin(wt) . (1)

Here a(t) is the position angle of the disk at time ¢,  is
the initial amplitude of the oscillation, w is the frequency,
and A is the logarithmic decrement, or damping. The
period T'=2m/w and damping A are related to the fluid
properties through a working equation which we discuss
below. As an example, when surrounded by a Newtonian
fluid of viscosity 7=2.6 mPas and density p=1.0 g/cm’
(values typical of near-critical isobutyric acid and water
mixtures), the values of the period and damping are ap-
proximately 7=3.963 s and A=0.0203. This value of A
describes a motion in which the oscillation amplitude de-
cays by a factor of 1/e in about eight oscillations. Note
that the period and damping are comparably affected by
the fluid in the sense that the relative change
(T—T,)/T, of the period from its value in vacuo, 0.0185
in this example, is roughly equal to the value of the
damping.

We determine the oscillation period T and the damping
A by a method that requires only the measurement of the
time intervals between the detection of the reflected laser

beam at several fixed positions [25]. Figure 2 shows a
sketch of the arrangement. The mirror 1 is attached to
the disk. A photodiode detector 2 is located at the
beam’s rest position. Another “offset” detector 3 is locat-
ed at an arbitrary angle. Signals generated by the passage
of the beam across the detectors are shaped and amplified
by an amplifier 4 and then fed into two quartz-crystal ti-
mers 5 and 6. The timers are configured so that timer 5
records the time intervals between successive detections
of the beam at the rest position, while timer 6 records the
time intervals between the detection of the beam at the
rest position and its subsequent detection at the offset po-
sition. We denote these latter intervals by 7;, where the
subscript refers to cycle number. The 7; are short initial-
ly when the amplitude of the disk’s motion is large, but
they increase as the motion decays, with the last of the
recorded T; tending toward T /4 as the amplitude of the
oscillation becomes just sufficient for the beam to reach
offset detector 3. Thus the intervals measured by timer 5
directly furnish the half-period 7T /2, while the rate of in-
crease of the intervals 7; allows the computation of the
damping A according to

In[sin(w7;)/sin(w7; )]
2TA=—
j—k+(r;—7)/T

()

for any pair of intervals 7; and 7, and 0=27/T. In
practice, one has to apply small corrections to both sets
of measured time intervals in order to account for the
finite width of the laser beam and for the fact that detec-
tor 2 generally is not located exactly at the beam’s rest
position. To do this, we use a procedure similar to the
one described in Ref. [25]. Reproducibility at the level of
0.05 ms and 5X 1079, respectively, is readily obtained for
the measurements of 7" and A by this method.

In the present experiments, we consider processes dur-
ing which the fluid properties change in time, so that the
disk undergoes a more complicated motion than that de-
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FIG. 2. Schematic diagram of the arrangement to detect the
motion of the disk. The mirror 1 is attached to the disk and os-
cillates about an axis perpendicular to the plane of the paper.
Light reflected from the laser 7 passes over detectors 2 at the
rest position and 3 at an offset position. The signals are shaped
by an amplifier 4 and fed into two quartz-crystal timers 5 and 6.
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scribed by Eq. (1). We assume, however, that Eq. (1)
remains a good approximation to the disk’s motion over
each oscillation cycle, and we speak of the “cycle-by-
cycle” values of the period T; and damping A; obtained
from the successively measured period intervals T; and
the application of Eq. (2) with T=T;, 7;,=7;, and
Ty =T;+1- By solving the instrument’s working equation
with T; and A; as inputs, we obtain cycle-by-cycle values
of the changing fluid properties. These we refer to the
time that locates the midpoint of the ith cycle.

Not shown in Fig. 2 is a second offset detector on the
side of the rest position opposite to that of the offset
detector 3. This detector records a second set of time in-
tervals analogous to the intervals 7; measured at detector
3, and a parallel treatment of them gives a second set of
cycle-by-cycle values of the fluid properties. Because the
detections at the second offset detector occur at times dis-
placed from the times of detection at detector 3 by ap-
proximately one half of an oscillation period, the times of
reference for the second set of fluid properties inter-
penetrate the reference times of the first set. Thus by us-
ing two offset detectors, we are able to measure the rheo-
logical properties of the fluid as functions of time with
T /2=2 s as the time resolution.

Mixtures of isobutyric acid (IBA) and water are partic-
ularly suitable for these experiments. For example, the
components have similar densities, so that the effects of
gravity on the process of phase separation can be kept
small [26]. Also, the pressure-quench technique (de-
scribed below) works particularly well with these mix-
tures [7]. We prepared samples from distilled, degassed
water and IBA as supplied commercially with a stated
purity of 99%. We did not attempt further purification
of the IBA because of the large quantities required.
However, care was taken to ensure that only inert gases
came into contact with the samples during their prepara-
tion and transfer into the viscometer. The compositions
of the mixtures were determined by weighing the com-
ponents on a large double-pan balance. We performed
experiments with three samples: a sample at the critical
composition, an IBA-rich sample, and a water-rich sam-
ple. The compositions, expressed as mass fractions of
IBA, are 0.388, 0.426, and 0.343, respectively.

The pressure-quench technique [7,27] for inducing
phase separation in liquid mixtures is based on the pres-
sure dependence of the critical temperature T,(P). For
IBA plus water [7],

dT,

c_

P —54 mK /bar . (3)

We assume that the dependence of the critical concentra-
tion on the pressure may be neglected, and that the sepa-
ration temperatures of the off-critical coexistence mix-
tures T, (P) have the same dependence on pressure as the
critical temperature: dT,, /dP=—54 mK/bar. In the
experiments, we work at a fixed temperature T, of the
disk. (The subscript has been added to avoid confusion
with the period T. In the subsequent parts of the paper,
where it will not be necessary to refer to both quantities
within the same section, we shall use the same symbol T

to denote either the temperature or the period.) We
define the critical pressure P,(T,;) [or the phase-
separation pressure P (7;)] as the pressure at which
T .(P)=T,; [or T,(P)=T,;]. At pressures above P, or
P, the sample is in a one-phase equilibrium state. Phase
separation is induced by sudden depressurization to a
final pressure P, below P, or P.,. Because of adiabatic
expansion, the sample cools slightly, but this effect is
small in IBA-plus-water mixtures for which the adiabatic
thermal pressure coefficient (8T, /3P )g is small. Thus
the depressurization to the final pressure P, is equivalent
to a temperature quench of depth Q =(P, —P/)|dT, /dP)|
(or this expression with P_, replacing P, in the case of an
off-critical mixture). We shall routinely specify the depth
of a pressure quench as the depth of the equivalent tem-
perature quench. The values of the quench depth Q given
below include a correction for adiabatic cooling based on
an estimate of 3 mK/bar for (8T, /dP)g [7].

The viscometer’s metallic walls and its placement in-
side the thermostat make a direct determination of P, or
P_, by visual observation of the sample impossible. It is
therefore necessary for us to infer P, or P, from the
behavior of the viscosity. We restrict the viscosity mea-
surements made at steady pressures in the one-phase re-
gion to pressures at least 1 bar above P, or P_. This
practice is necessary because we often observe that the
viscosities measured at constant pressure begin to drift
slowly at a rate of the order of 1% per hour upon our set-
ting of the pressure to a lower value. We attribute this
behavior to incipient phase separation of the samples at
locations away from the disk due to temperature or con-
centration gradients which are difficult to eliminate com-
pletely in an instrument of this size. In the experiments
on the critical mixture we determine the critical pressure
P, by measuring the viscosity in the one-phase region
P_+1 bar <P <P, +8 bar as a function of pressure, then
fitting these data with an expression of the form [17]
p—p, 7Y

p

n(P)=Ap (4)

c

Here A, and P, are treated as fitting parameters and the
critical exponent ¥ has the value 0.040 [17,28-30]. We
find that this procedure locates P, (T, ) within a statistical
resolution of about 0.1 bar, which is equivalent to about 5
mK. This value may therefore be taken as the uncertain-
ty in the values for the quench depths Q we report for the
experiments performed on the critical mixture.

For later computations, it is convenient to rewrite Eq.
(4) in the form 7= 4 e ¥, where the equivalent reduced
temperature €= (T, —T?)/T? replaces the reduced pres-
sure (P—P,)/P.. Here T? denotes the critical tempera-
ture referred to zero pressure via Eq. (3) in the form

0 dT,

TC=Td+FPc(Td). (5)
From a comparison of several sets of data, fitted separate-
ly by Eq. (4), we arrive at 4 =(2.00+0.02) mPas with
T2=299.80 K. This value for 7° is about 1 K higher
than is typically reported for carefully purified critical
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samples of IBA plus water under its vapor pressure. We
suppose that the discrepancy is due to impurities in our
sample and that it has no important consequences for our
experiment. This is confirmed by the observation that
our value of 4 =(2.001+0.02) mPas is in agreement with
the value obtained by other investigators [28,31,32]. Ac-
tually, the viscosity amplitude A4 is expected to depend
on temperature [28]; the value given here applies for tem-
peratures near 7;~26.8°C.

Viscosity data taken in the one-phase region of an off-
critical mixture may also be represented by an expression
of the form Eq. (4). In this case, however, one must re-
place P, with a parameter P, which is not the phase-
separation pressure P_,, since in fact the viscosity of an
off-critical mixture remains finite in the vicinity of P,.
Instead, P, <P, is a pressure inaccessible to one-phase
equilibrium states which we may call the pseudospinodal
pressure [32,33]. The physical significance of P and its
relation to P, are not clear, so although we determine
P, in the manner described, we use a different approach
to fix P,,. Namely, we make a series of viscosity mea-
surements during which we drop the pressure from a
fixed initial value P; =~ P_, +2 bar to a lower final pressure
P;. The pressure is returned to P; after about ten oscilla-
tion cycles. A lower and lower final value is chosen for
P, as we progress through the series. Initially, at the
final pressure P, the sample is still in the one-phase re-
gion, and the viscosities measured at P, show a weak in-
crease with decreasing P, due to critical enhancement.
Eventually, however, we notice a marked break in the
slope of a plot of 9(P,) versus P, which we attribute to
enhancement of the viscosity by domains formed during
phase separation. According to this interpretation, we
identify the phase-separation pressure P, with the pres-
sure where we see the abrupt change of the slope. This
procedure locates P within a resolution of about 0.3
bar, so that the values of the quench depths reported for
the experiments on the two off-critical mixtures are un-
certain by about 15 mK.

An important parameter characterizing the off-critical
mixtures is the difference T,—T, of the critical and
phase-separation temperatures (at the same pressure). In
principle, this information is furnished by the measure-
ments (at the same temperature) of P, and P for the
critical and off-critical samples. In fact, however, we find
that the measured values of P, and P, for our three sam-
ples are not consistent with coexistence-curve informa-
tion on the IBA-plus-water system taken from the litera-
ture. We assume these inconsistencies are due to impuri-
ties which may be present in the different samples in
different concentrations. Another problem is that our
samples are effectively open systems, since following a
quench we repressurize the viscometer with fresh nitro-
gen gas. This practice may contribute to the large drift
rates (for example, about —4 mK per day in the case of
the critical sample) of the critical and phase-separation
temperatures that we observe. Therefore, when the value
of T,—T, is required in the analysis of the behavior of
the off-critical mixtures, we regard it as a parameter
determined by the sample composition and calculate it

from an expression for the coexistence curve of IBA plus
water [32,34]. This expression appears in Table I. From
it we calculate T, — T, =61 mK for the water-rich sam-
ple (IBA mass fraction 0.343) and T, — T, =32 mK for
the IBA-rich sample (IBA mass fraction 0.426).

The procedure for quench measurements in the critical
and off-critical mixtures is similar. We set the disk into
motion while the sample is in the one-phase region at an
initial pressure P; from 1 to 2 bar above P_ or P_,. After
the disk completes several cycles, we drop the pressure to
the desired final value P,. We monitor the motion of the
disk for about 40 s during the phase-separation process
that follows. We then raise the pressure to a high value,
typically several bar above the initial pressure P;, and al-
low the system some time to reequilibrate. By comparing
the values of the viscosity measured before and after the
quench experiment, we judge whether remixing is re-
quired.

The samples become very turbid during phase separa-
tion, but the optical method used to observe the disk’s
motion requires that the samples remain transparent in
the vicinity of the window and mirror. To solve this
problem, shortly before a quench we apply a current
pulse to a small electric heater cemented to the
viscometer’s surface just behind the mirror. This warms
the region near the mirror and window slightly so that
the sample thereabout remains sufficiently clear during
the quench. The long length of the mirror stem (about
100 mm) and the fixed plates around the disk prevent this
procedure from having a measurable effect on the sam-
ples in the vicinity of the disk during the quench mea-
surement. The method is effective only for quenches that
are not too deep. The quench-depth limit for our experi-

TABLE 1. Properties of coexisting phases of near-critical
IBA-plus-water mixtures.

Critical temperature* T,=299.80 K

Critical composition® X.=0.388

(IBA mass fraction)

Reduced temperature‘e=(7,—T)/T.

Coexistence curve Xy—X, =g %% g, =1.44
Xy+X,=2(X,+gre); g,=2.03

£ =1Ee"%; £,=0.362 nm

D =kyT./6mnE =(6.0X107'1° m%/s)e®
F:F06]'26;

To=ksT, /2.6(£,)*=1.21X10"> N/m
Nuy= (Pt A'el3)e00%

7°=1.89 mPas 4’'=2.60 mPas

Correlation length®
Mass diffusivity’
Interfacial tension®

Viscosity"

*These measurements.

®Reference [35].

°T stands for the equivalent final temperature after a pressure
quench: T,—T=AT+Q, where AT=T,—T,, is 32 mK for
the IBA-rich mixture and 61 mK for the water-rich mixture.
dReferences [32] and [34].

‘Reference [31].

fWhere 7=(2.0 mPas) |e| ~*% is identified with the viscosity of
the critical mixture in the one-phase region.

eReference [36].

"References [32] and [37]. The upper phase (IBA rich) takes the
plus sign.
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ments on the critical mixture is about 70 mK; beyond
this the reflected beam becomes too faint and diffuse for
reliable detection. The limit for the off-critical mixtures
is about 200 mK.

Measurements during which we make a jump between
equilibrium states in the one-phase region test the
viscometer’s ability to yield the rheological properties as
functions of time and also assure us that the sudden pres-
sure change introduces no spurious instrumental effects.
Figure 3 shows an example of a run of measurements per-
formed in the one-phase region of the critical mixture.
The viscosity at constant temperature 7,;=26.76°C is
shown as a function of pressure. Data represented by cir-
cles were obtained in measurements during which the
pressure was steady. A fit of Eq. (4) to these data yields
the amplitude A4p=2.69 mPas and critical pressure
P_=3.27 bar. The viscosity value represented by a dia-
mond was calculated from the time-averaged values of
the period and damping which we measured following a
sudden decrease of the pressure from 4.80 to 3.61 bar.
The agreement with the extrapolation of the fit made to
the data taken at steady pressures is excellent. With adi-
abatic cooling taken into account, the pressure jump is
equivalent to a jump between an initial state 93 mK
above the critical temperature to a final state 14 mK
above the critical temperature. Figure 4 shows the rheo-
logical properties during the pressure-jump experiment as
functions of time which were calculated from the cycle-
by-cycle values of the period and damping. The figure
shows that the measured viscosity 7 becomes constant at
its final value within one oscillation cycle. This indicates
that we need not deconvolute an instrumental response
from the time-dependent rheological properties inferred
from the disk’s motion during the phase-separation ex-
periments. The quantity G, which is defined in the fol-

lowing section, is the elastic shear modulus. A finite
29} .
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FIG. 3. Viscosity i of the critical mixture of IBA and water
at constant temperature as a function of the pressure P. The
curve is a fit of Eq. (4) to the data represented by circles; the
pressure remained steady during each of these measurements.
The point represented by a diamond was measured after sud-
denly decreasing the pressure from 4.80 to 3.61 bar. The fitted
value of the critical pressure is P, =3.27 bar, so that the final
pressure is equivalent to a temperature 14 mK above the critical
point. The viscosity and elastic shear modulus measured during
the pressure-jump experiment as functions of time appear in
Fig. 4.
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FIG. 4. Viscosity 1 (open circles) and elastic shear modulus
G (closed circles) of the critical mixture of IBA and water as
functions of time ¢ measured during the pressure-jump experi-
ment illustrated in Fig. 3. The pressure was dropped to the
lower value at time ¢ =0.

value for G implies that a fluid is viscoelastic. In Fig. 4,
the measured values of G are scattered about zero, as
should be the case here since in its equilibrium states the
sample is a simple Newtonian fluid [38].

B. Working equations for Newtonian
and viscoelastic fluids

The working equation connecting the period and
damping of the disk’s motion with the properties of the
fluid is found by solving the Navier-Stokes equation for
the velocity of the fluid around the disk subject to a no-
slip boundary condition on the surface of the moving
disk. An exact solution to this problem is not available,
but an accurate approximation has been found in the case
where the fluid is Newtonian [39-41]. A most important
contribution was made by Newell, who evaluated the
large edge effect [39]. More recently, Nieuwoudt, Kestin,
and Sengers reviewed the theory of oscillating-body
viscometers and investigated the possibility of determin-
ing both the viscosity and the density of a Newtonian
fluid from the damped oscillating motion of a disk
suspended in the fluid [40]. In the present work, we gen-
eralize the working equation appropriate to a Newtonian
fluid by treating the viscosity as a complex number. In
this way we derive a working equation which allows us to
determine both the viscosity 7 and the elastic shear
modulus G of a viscoelastic fluid. We present the deriva-
tion and the result in some detail because in this way the
quantity G can be precisely defined and because our re-
sult constitutes an improvement of the working equation
presently to be found in the literature for the measure-
ment of the properties of viscoelastic fluids [42].

We begin with the result appropriate for a Newtonian
fluid. The calculation is most naturally carried out by
Laplace transform methods, and one obtains a complex
working equation in the form of a condition satisfied by
the Laplace transform of the time-dependent viscous
torque acting on the disk. The result is [39-41]
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where the complex number s=(—A+i)T,/T contains
the period and damping, and the viscosity and density are
contained in the boundary layer thickness 8=(7/wgp)'’?,
which characterizes the thickness of the region of appre-
ciable fluid flow. The radius of the disk is R; and its
half-thickness is 4. The coefficients B and C are geome-
trical constants:
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and p=8.80 g/cm’ is the density of the material from
which the disk is made. Equation (7) includes the effects
of the complicated fluid-flow pattern in the vicinity of the
disk’s edges. It is valid in the case that 8 <<h <<R,. A
typical value for 8 is 1 mm.

The complex equation (6) represents a coupled pair of
real equations. The quantities related by them are the
two measured parameters of the disk’s motion 7 and A,
two fluid properties 77 and p, and the instrumental con-
stants Ry, h, p, and wy,=27/T,. Since we consider the
fluid density p to be given, the two equations contain a
single unknown, namely the viscosity 7. The equations
are therefore overdetermined, which implies the existence
of a consistency relation between the period T and the
damping A. That is, it is possible to express T as a func-
tion of A, the fluid density p, and instrumental constants.
A rough approximation to this relation is the simple ex-
pression 7 /T,=~1+A, for which we gave a numerical ex-
ample above. The full form of the consistency relation is
given in implicit form in the Appendix. We find that the
full form of the consistency relation is quite accurate, in
that values for T calculated from it agree with the mea-
sured values to within 0.2 ms when T and A are measured
while the IBA-plus-water mixtures are in their equilibri-
um states as Newtonian fluids. However, during the pro-
cess of phase separation that occurs after a quench of the
samples into their regions of immiscibility, we find that
the measured values of the period may be as much as 10
ms smaller than the value expected on the basis of the
consistency relation and the measured damping. Our in-
terpretation of this behavior is that a liquid mixture un-
dergoing phase separation behaves as a viscoelastic fluid.
We suppose that the interfaces between the concentration
domains that form during phase separation have a finite
interfacial tension, so that energy is required for the
stretching of the domains that may occur in a shear flow
[16]. In this way, the liquid may exert a restoring force
on the disk which adds with the restoring force supplied
by the torsion wire. The net effect is to decrease the
period to a lower value than the one that would result in
the absence of elasticity in the fluid.

In order to deduce quantitative information about the
phase-separating mixtures from the period and damping
measurements, we need a working equation linking the

measured quantities with the properties of a viscoelastic
fluid. In a calculation from first principles, we would re-
turn to the fluid-velocity boundary value problem and
consider the revised equations of motion of the fluid that
result when the stress and fluid-velocity fields are related
by a constitutive equation appropriate for a viscoelastic
fluid. A much simpler approach is possible in the case
that the shear flow has a sinusoidal dependence on time:
beginning with Eq. (6), the working equation of a
Newtonian fluid, we generalize it by replacing the un-
known real viscosity 7 by an unknown complex viscosity
n*=n"'—in" to yield

* *
P14+ 25 | gt |3y pg | O
ph R, d
2
*
+Cs!2 o =0, (8)
d
where 8*=(9*/pwy)!’?. This complex equation
p

represents two real equations in the unknown quantities
7' and 1"’ which are determined by the now independent
quantities 7"and A.

The physical meaning of the complex viscosity be-
comes clear when we write down the equation for the
stress in terms of 7' and %"'. Specifically, we consider a
simple shear flow in which the fluid viscosity v is given by

v, ()=S(t)y, v,=0, v,=0, 9)

where S(z) is the shear rate. In the case of a Newtonian
fluid, the shear component of the stress tensor is given by
0,,(t)=nS(2) for arbitrary S(z). On the other hand, the
description of a viscoelastic material by a complex viscos-
ity is possible when S(¢) has the form

S(t)=Syexp(—Awt )coswt , (10)

where, in general, the initial shear-rate amplitude S, as
well as the phase of the oscillation may vary with posi-
tion. (An undamped flow, A=0, is of course an allowed
special case.) The complex viscosity 7* describes a
viscoelastic material for which the shear component of
the stress tensor is given by

0, (1)=Soexp(—Awt )(7n'coswt +7"'sinot ) (1n

when Egs. (9) and (10) hold. By defining
S*(t)=Syexp[(—A+i)wt], we can write Eq. (11) as
0,,(t)=Re[n*S*(¢)], which has the same form as the
Newtonian relation o,,(t)=Re[7S*(¢)]. As a result, the
fluid-velocity field around the oscillating disk executed by
a viscoelastic fluid for which the stress is given by Eq.
(11) differs from that of a Newtonian fluid only by phases.
Therefore, the working equation relating (7,A) with
(n',7m'') appropriate to such a fluid is found by substitu-
tion into Eq. (6) of n*=n'—in" for  with no change in
the form of Eq. (6), as we have assumed.

We can rewrite Eq. (11) in an equivalent but physically
more suggestive form. We begin with the identity

— . t ] ,
e A%%inet =w(1 +A2)ft e A9 coswt'dt’
0

+ Ae " 2%%coswt (12)
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where tan(wt,)=A defines the lower integration limit .
Equation (11) then becomes

¢ ’ ’
0, (N=1S1+G [ St (13)

where Egs. (9) and (10) are assumed to apply and where 7
and G are related to ' and 7'’ by

n=n'+An", G=w(1+A%)y" . (14)

The first term of Eq. (13) represents ordinary viscous ac-
tion. Henceforth we shall refer to the combination
n=mn'+A7n" as the viscosity of the viscoelastic fluid; it
differs only slightly from the real part of the complex
viscosity 7* since A is small. Since S(¢) is the shear rate,
or velocity gradient, its time integral is the gradient of
relative displacement, so we may identify the integral in
Eq. (13) with the shear strain present in the viscoelastic
material at time ¢. [The choice tan(wty)=A for the ini-
tial time #, when the strain is taken to be zero insures
that the strain tends to zero with the decaying shear rate
S(t) at long times.] The combination G =w(1+A%)y" is
therefore the effective elastic shear modulus of the fluid.
Throughout the rest of this paper, we will be concerned
with the measurement and prediction of the rheological
properties 17 and G of phase-separating liquid mixtures.
For computations, it is often convenient to work with
the explicit expressions for the real and imaginary parts
of Eq. (8). The notation required is somewhat cumber-
some, so we give these expressions in the Appendix.

III. CRITICAL MIXTURE

A. Measurements and analysis
for damped oscillatory shear

Figure 5 shows the results of three typical quench mea-
surements in which the final pressures are equivalent to
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FIG. 5. Viscosity 1 and elastic shear modulus G of the criti-
cal mixture as functions of time during spinodal decomposition
following quenches to final temperatures below 7,. The sym-
bols O, V, and O correspond to quenches of depths 11, 19, and
64 mK, respectively.

temperatures 11, 19, and 64 mK below the critical tem-
perature. The quench occurs at time t =0. The earliest
post-quench values of the viscosity 17 and the elastic shear
modulus G are referred to time t =4 s; they derive from
the period and decay of the disk’s motion that occurred
between t =2 and 6 s. The values of 7 and G at this earli-
est time increase with quench depth. As functions of
time, 7 and G decrease, with the rapidity of the decrease
at early times increasing with the quench depth. The
values of the viscosity at the earliest time after the deeper
quenches appear discontinuously high compared with
their subsequent values at times ¢ = 6 s. Many quench ex-
periments have convinced us that this behavior is repro-
ducible and systematic. The time dependence of G is
smoother. The viscosity becomes constant after four or
five disk oscillations at a final value that decreases with
increasing quench depth. The elastic modulus G contin-
ues to decrease at all measured times, but near the end of
the measurement its rate of decrease becomes small and
its value appears to become independent of the quench
depth.

We denote by 7, the value at which the viscosity be-
comes constant. For the experiments shown in Fig. 5, we
have 7,=3.07, 2.91, and 2.72 mPas corresponding to the
quench depths Q =11, 19, and 64 mK, respectively. The
values of 7, are comparable to the values of the viscosity
one might expect for this system in the absence of an
enhancement by concentration domains. For example, as
is discussed below Eq. (5), the viscosities of the one-phase
equilibrium states at equal distances Q above the critical
point may be calculated as A(Q /T?)~ %% with 4=2.00
mPas and T°=299.80 K. This expression gives 3.01,
2.94, and 2.80 mPas for the three values of Q. Also per-
tinent is a comparison of 71, to 7,(Q) and 7, (Q), the
viscosities of the coexisting upper and lower phases to
which the system would eventually evolve were the
phase-separation process allowed to continue. However,
we have not measured the viscosities of the coexisting
phases, nor are many such measurements to be found in
the literature. In the discussion of the measurements on
the off-critical mixtures we shall give a formula from
which we estimate 7, and 7;, and we find that the es-
timated values of ; and 7; bracket 1, In the case of
the critical quench of depth 64 mK, for example, we esti-
mate 7y ~2.9 mPas for the viscosity of the IBA-rich
upper phase and 7; =2.4 mPas for the viscosity of the
lower phase. It therefore seems reasonable to identify the
contribution of the domains A7 to the measured effective
viscosity 7 as An=mn—mn, and regard 7, as the back-
ground viscosity characteristic of the mixture in a homo-
genized state without domains. According to this inter-
pretation, the relative enhancement of the effective
viscosity by concentration domains A7 /7, can be as high
as 0.4 at times just after the quench (see Fig. 6). This re-
sult is in agreement with Onuki’s prediction of a relative
enhancement of the order 1. However, his result
An/mg~1 describes a stationary state of constant
effective viscosity which the system may attain at
sufficiently long times when subjected to a steady shear
flow [16]. In our experiments in which the shear flow is
oscillatory, we measure A7/7,~1 only at the earliest
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FIG. 6. Reduced interfacial viscosity (n—my)/1, and re-
duced elastic shear modulus G /w7, as functions of time ¢. The
curves have been calculated from the theory of Doi and Ohta.
Symbols have the same meaning as in Fig. 5.

times when A7 is changing rapidly, and the long-time
behavior is A1 /7,—0.

Doi and Ohta have developed a phenomenological
theory that can describe the time dependence of the rheo-
logical properties of a phase-separating critical mixture
undergoing time-dependent flows [20]. The interconnect-
ed concentration domains are thought of as a blend of
immiscible liquids separated by an intricate interface. In
a flow, the traceless part of the stress tensor of this sys-
tem is given by
dv, dug

dxg  Ox,

0ap= Mo —Tqu )

where T is the interfacial tension and the interface tensor
q,p is defined as [16,20]

Gup= 5 [ ds(nang—18,5) . 16

Here v is the macroscopic fluid velocity obtained by tak-
ing a coarse-grained spatial average of the microscopic
flow in order to remove the intricate details that occur on
the length scale set by the characteristic size of the
domains. The first term of Eq. (15) represents the viscous
stress associated with the macroscopic flow. Here, there-
fore, the viscosity 7, represents the viscosity of the sys-
tem apart from the contribution of the interfaces, and
consequently corresponds to the experimentally defined
quantity we have denoted by the same symbol. The
second term of Eq. (15) introduces the effect of the
domains in the form of the stress arising from deforma-
tions of their interfaces that may occur as the system
flows. In the definition of g4, 1, and ng are components
of the unit vector n normal to the interface. The integral
is to be taken over all the interfacial surfaces within a

coarse-graining volume V whose linear dimensions are
large compared to the domain size but small compared to
the length scale of the macroscopic flow. By its construc-
tion, g, is traceless, so it vanishes in the case where the
interface is, on the average, isotropically oriented.

Doi and Ohta have derived an equation of motion for
the interface tensor ¢,g in the form of a set of coupled
differential equations among the tensor elements of g4,
the macroscopic velocity-gradient tensor D g, and the in-
terfacial area per unit volume g. In the case of the simple
shear flow represented by Eq. (9), they take the form

2

dqu qu q r

2o - —g.—L |- - 17
dt S(t) qxx 3 (c+k)n0qqu > ( )

B _ sy |08 g | (i) T (18
dt =S(1) 39xy ¢ ) Mo 99xx > )

YRR 1
ar S(t)g,, cnoq . (19)

The component of the interfacial stress which affects the
disk’s motion is —I'q,,. A finite value for the component
q,, indicates a difference in the normal components of
the stress [16]. The terms on the right in Egs. (17)-(19)
describe free streaming of the interface in the macroscop-
ic shear flow. The remaining terms are phenomenologi-
cal terms that enforce the decay of q,,, g,,, and g. The
decay of g is according to the capillary-driven linear
growth of the interconnected domains that occurs in the
late stage of spinodal decomposition in fluids [4,5,7].
This can be seen by noting that the characteristic domain
diameter a(z) is related to the interfacial area per unit
volume g(t) by a(t)<gq ~(z) [26], and that in the absence
of a macroscopic flow [S(#)=0], the solution of Eq. (19)
is g " Nt)=gqy ' +c(I'/ny)t, where q(t=0)=gq, is the ex-
tent of the interface at some initial time. The second
terms of Egs. (17) and (18) describe the decay of the inter-
face tensor according to the combined effects of the decay
of g (that is, the decay of the interface itself) and relaxa-
tion of interfacial anisotropy by interfacial tension. The
first of these processes involves the dimensionless con-
stant ¢, which is known to be of the order 1072 [7]. The
relaxation of interfacial anisotropy is governed by the di-
mensionless constant k, about which we have no a priori
knowledge.

To apply the theory to our experiment, we consider the
case where the shear rate is given by
S(2)=Syexp(—Awt )cos(wt). In doing so, we are treating
the shear rate as given information and calculating the
interface’s resulting rheological response. In a more fun-
damental treatment, we would derive the shear rate by
solving the fluid-velocity equations for the fluid whose
constitutive equation included Egs. (17)—(19). Further-
more, we consider the damping A and the frequency o to
be constants. We thus ignore here the time variation of A
and w, which, in the experiment, enable us to measure the
time dependence of 7 and G. The values A=0.022 and
©=1.58 Hz we adopt are typical averages over time of
the damping and frequency measured during quenches.
For S, the initial shear-rate amplitude at the surface of
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the disk, we adopt the value 7.9 s~!. We arrive at this
value from the assumption that the fluid-velocity gradient
at the surface of the disk is the disk’s velocity divided by
the length |8*|, where 8* =(n* /pw)!’? is computed with
a time-averaged value of the complex viscosity 1* mea-
sured during the quench. A simple spatial average has
been taken to account for the dependence of the disk’s
linear velocity on the radial coordinate.

It is convenient to rewrite Eqgs. (17)—(19) in dimension-
less form. We introduce dimensionless variables 7, x, y,
and z defined by gq,,=xS¢n,/T, ¢y, =ySene/T,
q=zSyme/T, and t=7/w. In these variables, Egs.
(17)-(19) become

1. 2 xy c
ly — — — —_— s 20
fT'x=[exp(—AT)cosT] 3y+ . 'uxz (20)
y | _c
f 'y =[exp(—AT)cosT] | —x —dz+ i #yz , @1
f 2= —[exp(—A7)cosT]y —cz?, (22)

where f=S8,/w, u=c/(c+k), and the dot indicates
d /dt. Note that since no fluid-dependent quantities ap-
pear in the equations, they are, in particular, independent
of the quench depth. However, the fluid properties and
the quench depth enter the problem through the initial
values of x, y, and z, which one must specify in order to
determine a unique solution to Egs. (20)-(22). We put
x(0)=y(0)=0 and z(0)=zy=¢q,I'/79,S,. This choice
describes an interface with interfacial area per unit
volume ¢, oriented isotropically at the initial time ¢ =0.
We identify =0 with the moment of the quench and
therefore ignore the time interval 0 <t <t of early-stage
spinodal decomposition. Here ¢ is the crossover time
marking the beginning of the regime of capillary-driven
domain growth; the subscript stands for crossover. Equa-
tions (20)—-(22) are not applicable for times ¢ <t since
their phenomenological terms express the capillary-
driven growth mechanism. Moreover, at sufficiently ear-
ly times, the domains are presumably too diffuse for the
interface tensor ¢,g to be meaningful. However, we shall
show that ¢ . may be considered short compared with the
times over which we perform the experiments, so that we
may neglect the early stage of spinodal decomposition.
We treat the initial interfacial area per unit volume g, as
a free parameter, but we fix its dependence on the quench
depth Q. Thus, light-scattering experiments on quiescent
critical mixtures show that the characteristic domain size
a(t) at the time of the onset of linear growth ¢, is given
by a(t,)=0>b'E, where £ is the correlation length of equi-
librium concentration fluctuations and b’ is a constant of
the order 10 [5,7,43]. We therefore write q,=1/b§,
where b is of the same order as b’. The initial value of
the scaled quantity z is then zo=¢qyI" /74S,. A final form
for this last expression results when we identify 7, with
the measured viscosity of the one-phase region Ae %04
and use the expressions & =§06_0'63 and F=F061'26 to
give zo,=Be'?, where €=Q/T° and where
B=Ty/AE,S,b is treated as a free parameter.

We use a standard routine based on the Runge-Kutta

algorithm to solve Eqgs. (20)-(22) numerically [44]. The
computation yields the quantities x, y, and z as functions
of the scaled time 7. As might be expected, y(7) proves
to be a function that oscillates about zero with a decaying
amplitude and a phase that varies smoothly with respect
to the phase of the oscillating shear rate. Writing the
predicted shear component of the interfacial stress
0,,(t)=—Tq,,(t1)=—Syny(r=wt) in the form of Eq.
(11), we obtain

—y(m)=exp(—AT)[(n' /qo)cos(T)+(n"" /ny)sin(7)] ,
(23)

where 1’ and 7’ are here the real and imaginary parts of
the predicted interfacial complex viscosity. In general, n’
and 77"’ must depend on time if the calculated y(7) is to be
represented exactly by Eq. (23). During a single shear-
rate oscillation, however, we expect that Eq. (23) holds as
a good approximation with constant values for " and 7"'.
Equation (23) indicates that, in this case, (7’'/7,) and
(n"’ /my) are given by the first two coefficients in a Fourier
series expansion of —y(7)exp(+ A7) over the interval of
scaled time of duration 277. The values so obtained may
be referred to the time that locates the middle of the in-
terval. Thus we obtain the theoretical interfacial com-
plex viscosity at the time t =mT7T /2 as

'(t=mT/2) :_1_ (m+1)7w A =
—17-———% Trf(m—1 e®[—y(r)]costdT=C,, ,

)

(24)

(t=mT/2) :_l_f(m+l)1reAT[_y(T)]SianTESm ,
T~ (m

Mo —)nm
(25)

where m=1,2,... and T=2m/o is the oscillation period.
By applying Eqs. (14), we can rewrite these expressions in
terms of the interfacial viscosity Az and elastic shear
modulus G:

An(t=mT /2)/ny=C,, +AS,, , (26)
G(t=mT/2)/nw=(1+A2S,, . 27)

These may be compared to the measured quantities
(n—m9)/7Mo and G /nyw which are referred to the same
times t =mT /2. Note that A is the damping in the right
sides of Egs. (26) and (27), but Ay is the symbol for the
interfacial viscosity.

It is to be noted that the computation of the reduced
theoretical interfacial viscosity and elasticity modulus
Amn/m¢ and G /nyw has been carried out without specify-
ing any information that is specific to the fluid. The only
inputs to the computation are the values of the parame-
ters ¢, w=c /(c+k), and the coefficient B which fixes the
initial value z,=B(Q/T2)"** of the scaled interfacial
area per unit volume in terms of the quench depth Q. We
treat ¢, 1, and B as adjustable parameters. As discussed
above, the value of 7, which is needed only to reduce the
experimental quantities, is taken directly from the data as
the value at which the measured viscosity becomes con-
stant after several oscillations.
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A comparison of the theory and the experiment is
shown in Fig. 6. The data are the same as shown in Fig.
5 but are now in reduced form. The values chosen for the
adjustable parameters are

¢=0.038, u=0.8, B=7.6X10". (28)

In choosing this set, we have favored the elastic shear
modulus and obtained good agreement between theory
and experiment for this property. The agreement be-
tween the measured and predicted interfacial viscosity is
only qualitative. However, the theory reproduces the im-
portant features of the observed viscous behavior, such as
the rapid decay to zero and the markedly high value just
after the deepest quench. (That the measured A7 decays
to zero, not to any other constant value, has been ar-
ranged by our choice of 714, while the behavior An—0 of
the calculated A7 is a nontrivial prediction of the theory.)
From the value of the fitting parameter B, the relation
B=Ty/A&,S,b derived above, and the property ampli-
tudes given in Table I, we find b =27, where g, =1/b¢§ is
the initial value of the interfacial area per unit volume.
Consistent with our neglect of the regime of early-stage
spinodal decomposition, we identify g, with the interfa-
cial area per unit volume at the time of the onset of the
regime of capillary-driven domain growth.

It is interesting to compare these results with some re-
lated information recently obtained by Kubota et al.
from light-scattering experiments performed on a sample
at rest macroscopically [43]. These authors, who also
worked with a critical IBA-plus-water mixture, deter-
mined the time of the crossover to the regime of linear
domain growth t, to be t,~100(£2/D). For times
t>t., the wave number k,, at which the intensity of the
scattered light is maximum is given by k,, =16.95/Dt.
Here & and D are the correlation length and mass
diffusivity, respectively, in the one-phase region at the
temperature T > T, such that T—T,=Q, where Q is the
quench depth. To analyze these findings, we assume that
the mass diffusivity D satisfies the Stokes-Einstein rela-
tion D=kpT/6mmé [45] with the viscosity
N=1o= A(Q /T?) %% identified with 1, and with the
measured viscosity in the one-phase region, that the in-
terfacial tension satisfies the two-scale-factor universality
relation D=k, T /2.6£% [36], and that the wave number
of maximum scattering is related to the characteristic
domain diameter a(?) by k,,(t)=2m/a(t). With these as-
sumptions and with £=£,(Q/T?) %% with £,=0.362
nm [31], we calculate the crossover time ¢ as 15, 5, and
0.5 s for our quenches of depths 11, 19, and 64 mK.
Thus, except during the earliest times of our shallowest
quench, the regime of early-stage spinodal decomposition
t <t takes place within about one shear-rate oscillation.
The light-scattering experiment gives a(¢)=c'(I'/n)t,
with ¢’=0.051, for times ¢ >t . At the time ¢, of the
onset of the regime of capillary-driven domain growth,
the characteristic domain diameter is a (¢, )=b'E with
b'=37.

The numbers ¢’ and b’ are comparable with our ¢ and
b. We do not expect to find ¢ =c¢’ and b =5’ because the
inverse of the interfacial area per unit volume ¢ ~! and

the characteristic domain diameter a are not identical,
but only of the same magnitude. We assume that
a(t)q(t)=F, where F is a dimensionless constant of the
order 1. We then have ¢'/c=b'/b=F. The constant F
may be interpreted as the interfacial area per domain ex-
pressed in length units equal to the characteristic domain
diameter. The value of F depends on the morphology of
the concentration domains. For example, F =3 for a reg-
ular array of cubes. A smaller value would be expected
for a system of highly elongated, tubelike domains with
smooth walls. Structure of this type has been observed in
light-scattering studies of phase-separating mixtures sub-
jected to steady shear [11,14]. From our experiment and
analysis of the work reported in Ref. [43] we obtain
¢'/c=1.34 and b’'/b=1.37. The two ratios are con-
sistent, but seem too small to be the true value of F.
There is, however, considerable uncertainty in the
identification k,, (¢#)=2m/a(t). For example, Chou and
Goldburg measured domain formation in a quenched
critical mixture by light scattering and direct observation
with a microscope and found that a(¢)k,,(¢) ranges from
5 to 10 [5].

B. Stationary states and nonlinear viscoelasticity
in the theory of Doi and Ohta

In our experiment, the amplitude of the oscillating
shear rate decays in time. Consequently, the time-
dependent behavior of the measured rheological proper-
ties is partly due to possible nonlinear effects (i.e., the
dependence of the interfacial viscosity and elastic shear
modulus on the shear-rate amplitude), as well as the ex-
plicit time dependence of the interface caused by its evo-
lution as the phase separation proceeds. We can evaluate
the contribution of the changing shear-rate amplitude by
calculating the rheological properties as functions of time
in the case that the applied oscillating shear rate has a
constant amplitude and comparing the results with the
previous computations in which the damping was includ-
ed. Figure 7 shows the reduced interfacial viscosity
An /74 and elastic shear modulus G /nw calculated from
the theory in the cases of damped and undamped oscilla-
tory shear flows. The quench depth is 64 mK, and the
solid curves, for which the damping A=0.022, are the
same as the ones that appear in Fig. 6 for this quench
depth. The dashed curves have been calculated with a
constant shear-rate amplitude S;=7.9 s~ ! equal to the
initial value of the shear-rate amplitude in the case that
the damping is included. The curves suggest that the
measured time-dependent behavior of An and G during
the latter half of the experiments in large part enters
through their dependence on the shear-rate amplitude as
the latter changes in time.

To investigate these effects more systematically, we
consider the behavior of the solutions of Egs. (20)—(22) at
long times in the case A=0, i.e., when the shear rate os-
cillates in time with constant amplitude. We are con-
cerned with the question of whether the solutions tend to-
ward constant-amplitude, oscillatory functions of time.
In the case that this is so, the interfacial viscosity An and
elastic shear modulus G become independent of time.
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FIG. 7. Comparison of the rheological properties predicted
by the theory in the case of damped and undamped oscillatory
shear. The quench depth is 64 mK. The solid curves are the
same as the ones appearing in Fig. 6 and show the effects of a
damped oscillating shear rate S(¢)=Syexp(— Awt)cos(wt) with
S0=7.9 s7!, A=0.022, and o=1.58 Hz. The dashed curves
show the effects of a shear rate that oscillates with constant am-
plitude so that S(¢)=S,cos(wt) with S;=7.9s7 .

Their dependence on the shear-rate amplitude S, and the
frequency o can then be investigated without the necessi-
ty of treating the system’s evolution in time. We are not
able to establish analytically the existence of periodic
solutions of Egs. (20)-(22), but again rely on numerical
methods. Specifically, starting from the initial conditions
x(0)=y(0)=0 and z(0)=z,=0.60, we have solved Egs.
(20)-(22) (with A=0) over the time range 0<7<60r
(i.e., 30 shear-rate oscillations.) The value z,=0.60 cor-
responds to a quench of depth 19 mK, but we have
verified that the long-time behavior which concerns us
here is independent of the value of z;. The form of Egs.
(20)-(22) shows that the rheological character of the in-
terface depends on the shear-rate amplitude S, and the
frequency ® only through the ratio f=S,/w. This
unusual situation comes about because, as discussed by
Doi and Ohta, the theory does not have an intrinsic time
scale [20]. Whereas in the previous computations we
have used for f the value f=5, which is the ratio
Sy /®=17.9 s71/1.58 Hz=5.0 of the values appropriate to
the experiment, in the present context we consider the
behavior of the solutions as f is varied over a wide range.
To address the question of whether the solutions tend to
periodic functions, we analyze their behavior over the
last ten shear-rate oscillations (i.e., cycles 20-30.) The
results indicate that there is a critical value f, for f such
that the solutions of Egs. (20)—(22) tend toward oscilla-
tions with constant amplitudes when f > f.. That is, for
large values of f the shear distortion is effective enough
and the domain growth can be stopped, resulting in
dynamical equilibrium of the domain size distribution.

When f < f,, the amplitudes decay indefinitely. Thus for
small values of f the effect of the shear becomes weak
and the domain growth cannot be stopped, leading to
macroscopic phase separation. The value of f, depends
only on the parameter u [46]. We have studied most ex-
tensively the case 4 =0.8, for which f,~5. We find that,
with f > 5.4, the fractional change per cycle of the ampli-
tude of the function y(7) (which is the scaled interfacial
shear stress) over cycles 20—30 is of the order 10~ ¢ and
may have either sign. Since nonconstancy of the ampli-
tudes at this level may be attributed to the accuracy of
the algorithm, we conclude that Egs. (20)—-(22) do in fact
attract periodic solutions for A=0 and f > f, [47]. On
the other hand, over the same range of times (20-30
shear-rate cycles) and with 3 < f <4.4, our computations
show that the amplitude of y(7) decays with a fractional
change per cycle of the order 1072, The decay is very
slow, however, and in fact appears to be like 7L In our
actual experiments, where f is effectively ramped down-
wards through a range of values of f less than f., we see
a combination of this slow decay and a stronger decay,
best thought of as an implicit time dependence due to the
changing f.

Figure 8 shows a plot of the interfacial viscosity Ay
and the elastic shear modulus G, resulting at long times
when the interface is subjected to an oscillating shear
flow, as predicted from the theory of Doi and Ohta. The
value of the phenomenological parameter p is 0.8 [46].
The properties have been reduced by a new quantity 7,
defined by

o ( )2 7o > (29)
3c(1+pu)

which is the interfacial viscosity that results at long times

when the interface is subjected to a constant (nonoscilla-

tory) shear flow, according to the theory. This result is
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FIG. 8. Reduced interfacial viscosity An/7, and reduced
elastic shear modulus G /w7, predicted by the theory for
constant-amplitude oscillatory shear as functions of f=S;/w.
The properties have been reduced by the steady-state interfacial
viscosity 7, =p(1—pu)ne/3c(1+pu)? predicted by the theory in
the case of a constant (nonoscillatory) shear flow. See the text
for the meaning of the dashed sections of the curves.
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readily found from Egs. (20)-(22) by replacing
[exp(— AT)cos7] by 1, as is appropriate for a steady shear,
setting X =y =z =0, solving for x, y and z the system of
algebraic equations that results, and thus obtaining a con-
stant solution to the system of differential equations. We
have established numerically that all time-dependent
solutions approach this constant solution at long times.
Figure 8 shows that the steady-state interfacial viscosity
under an oscillating shear flow is shear thickening and
frequency thinning since it increases with the ratio
f=S,/w. In contrast, the interfacial viscosity under a
constant shear flow is Newtonian at long times, since its
value 77, does not depend on the shear rate [see Eq. (29)].
As f— oo, the rheological response of the interface under
an oscillating shear flow becomes purely viscous with a
viscosity that approaches 7, but the convergence is very
slow. As has been discussed, the computations indicate
that periodic solutions to Egs. (20)—(22) such that the
rheological properties are independent of time are ob-
tained only in the case that f>f,, where f.=5 for
©=0.8. Figure 8 shows that both the interfacial viscosity
and the shear modulus are strongly shear dependent in
the vicinity of f=5. When f < f,, the properties never
become independent of time but decay indefinitely. The
sections of the curves for which f <5 have accordingly
been drawn with broken lines, since here steady-state
solutions do not exist. These sections merely represent
the calculated rheological behavior at a particular time,
namely the twentieth oscillation cycle. The qualitative
behavior shown by these sections of the curves is relevant
to the experiment, however. They indicate that, at
sufficiently low f, the rheological behavior of the inter-
face may be entirely elastic, although also time depen-
dent, as illustrated in Fig. 8, showing that for f <4 there
is a region where the viscous enhancement is negligible,
while the elasticity of the fluid is appreciable. This situa-
tion will not last: G will go to zero as time goes on and
Fig. 8 only indicates the conditions at a particular time.
However, the decay is slow, and for a wide range of times
we expect a purely elastic response from the interface, as
was actually seen in the experiment (Fig. 6), where the
decay of the disk’s motion effectively ramps the value of
f through the range 1.2 < f <5.

IV. OFF-CRITICAL MIXTURES

Figures 9 and 10 show the viscosity and elastic shear
modulus as functions of time as measured during
quenches in an IBA-rich mixture, X=0.426, and a
water-rich mixture, X =0.343. Here X denotes the IBA
mass fraction. These two off-critical mixtures differ re-
markably from the critical mixture and from each other
in their rheological behavior during phase separation.
Both mixtures show large viscosity enhancements which
remain essentially constant during the measurements and
increase with the quench depth. Elasticity is present in
the case of the IBA-rich mixture (Fig. 9), with the elastic
modulus G increasing with time. The initial values of G
are negative for deep quenches. During the latter half of
the measurements, G is positive for quenches of all
depths, varies less rapidly, and increases with quench
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FIG. 9. Viscosity 77 and elastic shear modulus G as functions
of time during the phase separation of an IBA-rich mixture.
The curves shown for G are guides to the eye. O, 172 mK; V,
95 mK; O, 37 mK; 00, 23 mK; A, 9 mK.

depth. In striking contrast, elasticity is absent in the case
of the water-rich mixture (Fig. 10): the values of G after
the quench are distributed about zero with about the
same level of scatter that we see before the quench, while
the mixture is in the one-phase region.

In the remainder of this section, we shall develop some
ideas toward understanding the observed behavior of
these mixtures. We show that the quench-depth depen-
dence of the viscosities, and also the order of magnitude
of their values, can be predicted from constitutive equa-
tions which have been proposed to describe dilute emul-
sions. These theories also predict a positive elastic shear
modulus that increases with the volume fraction and the
radius of the droplets of the suspended phase. Drawing
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FIG. 10. Viscosity 1 (open symbols) and elastic shear

modulus G (closed symbols) as functions of time during the
phase separation of a water-rich mixture. O and @, 241 mK; ¢
and ¢, 80 mK; [ and M, 40 mK.
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from other experimental and theoretical studies on
concentration-cluster size and growth in quenched off-
critical liquid mixtures, we can explain why the elasticity
of the IBA-rich mixture in phase separation increases
with time and also predict its order of magnitude during
the latter half of our measurements when its value is posi-
tive. We cannot explain the details of its time and
quench-depth dependence or its initially negative value,
nor do we understand the absence of elasticity during the
phase separation of our water-rich mixture.

In a classic paper, Taylor has calculated the effective
viscosity of a dilute emulsion consisting of spherical
droplets of a liquid with viscosity 7, (droplet viscosity)
suspended in a liquid with viscosity 7, (suspending-liquid
viscosity) [48]. We denote Taylor’s result by 7:

nr=n,1+7f14), (30)
with
__ 10A+4
AT (1)

where ¢ <<1 is the volume fraction of the droplets and
A=m, /7, is the ratio of the viscosities of the liquids. For
equal viscosities, f; =1. The restriction to low volume
fraction allows hydrodynamic interactions between the
droplets to be neglected. The stipulation that the drop-
lets remain spherical under shearing of the emulsion is
satisfied for sufficiently low values of the capillary num-
ber Ca, defined as
Rn,S

a= —F— s
where R is the droplet radius, S is the shear rate, and T is
the interfacial tension [48,49]. Taylor’s theory applies in
the case where the shear flow is steady. Oldroyd has gen-
eralized the theory to include weakly time-dependent
flows [50]. His treatment yields the constitutive equation
of a dilute emulsion in the form of an equation relating
the stress and strain-rate tensors 0,5 and D5 and their
time derivatives:

(32)

1+k1% UaB‘:Z'r]T 1+K2§; DaB . (33)

Here, A, and A, are the so-called relaxation and retarda-
tion times defined by

3 1 19A+16
M=ho |14 (x+1)<2x+3)¢l ’ (34
3 194416
}\’ — - M
2=%o 1= 75 (k+1)(2k+3)¢} ’ (35)
191+ sR
= (19A£16)20+3) 7 a6

40(A+1) r ’
while the strain-rate tensor D ,5=1(dv,/dx+3v5/dx,,)
is calculated from the macroscopic fluid velocity v. In
the case where v has the form of the Couette flow given
by Eq. (9) and the shear rate S(¢) oscillates sinusoidally
with frequency w, Eq. (33) yields the shear-stress com-
ponent o,, in the form of Eq. (13) with the effective
viscosity 7 and elastic shear modulus G of the emulsion

given by
_ 1+ A A 07 (37)
T e T
A2, 245
G =70 ————>=—=f,00’’R /T . (38)
MOl 64 20T

Here, f,=[2(19A+16)/35(A+1)]* with A=mn,/7,;
f>=1 in the case of equal droplet and suspending-liquid
viscosities 77, and 77,. The limits indicated here give the
behavior at low frequencies wAy<<1. This limit holds in
all of our experiments.

In order to compare the measured rheological proper-
ties of the mixtures undergoing the time-dependent pro-
cess of phase separation with the theoretical properties of
emulsions, in principle we must regard all of the quanti-
ties @, 7, N4, I, and R as time dependent. As a practical
alternative, suggested by the observed time independence
of the viscosity, we instead take the droplet radius R to
be the only changing quantity and identify @, 7, 7,, and
I’ with their values in the equilibrium, two-phase state.
These can be calculated from determinations of the prop-
erties of the equilibrium states reported in the literature.
The expressions we use for the properties of the coexist-
ing phases are given in Table I. In particular, the volume
fraction in equilibrium of the minority phase, which we
identify with the volume fraction of the suspended drop-
lets of the emulsion, may be calculated approximately
from [7]

B
AT

1= AT+Q

1
. 39)
o= > , (

where B=0.324 is the coexistence-curve exponent,
AT=T,—T_ is a function of the composition X of the
off-critical mixture, and Q=T ,—T, is the quench
depth, T, being the equivalent final temperature after a
pressure quench. From the information for the coex-
istence curve given in Table I, we calculate AT =32 mK
for the IBA-rich mixture and AT =61 mK for the water-
rich mixture. In calculating ¢, we make small correc-
tions to Eq. (39) to take into account the density
difference of the phases and the asymmetry of the coex-
istence curve [32,34,35]. These corrections amount to
5% at most. The form of the expression we use to calcu-
late the viscosities of the coexisting phases as functions of
the quench depth was suggested by a figure in Ref. [32];
we have evaluated the two parameters from an analysis of
the viscosity data given in Ref. [37].

We are left with the specification of the droplet radius
R, which we identify with the characteristic radius of
clusters of the new phase and which will contain all the
time dependence of the phase-separation process in our
simplistic treatment. Homogeneous and heterogeneous
nucleation, as well as spinodal decomposition, are all pos-
sible mechanisms for the decay of supersaturated, one-
phase mixture states. Here for simplicity we develop a
picture based on homogeneous nucleation. In homogene-
ous nucleation, thermal fluctuations are the origin of mi-
croscopic clusters larger than the critical size R, =&~ /3¢
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for stability against reevaporation of the cluster back into
the supersaturated, continuous phase [1,3]. Here, £ is
the correlation length of concentration fluctuations in the
coexisting phases. Such microscopic clusters are pro-
duced at an appreciable rate in quenches at least as deep
as the cloud point given by the classical Becker-Doring
theory as 0.15AT [1]. All the quenches we report here
are at least this deep. Clusters larger than the critical
size can grow to mesoscopic size in several different ways
that have been observed in experiments or considered in
theories. For orientation, we compare five cluster-growth
mechanisms in Table II. In addition to the expressions
for the cluster radius as a function of time, the table gives
the numerical value of the cluster radius at time =30 s
in the case of our typical quench of depth 94 mK per-
formed on the IBA-rich mixture. Lifshitz-Slyozov con-
densation and Brownian coalescence of clusters have
been studied theoretically by Siggia [4] and experimental-
ly by Wong and Knobler [7]. Both mechanisms predict
the growth of clusters according to ¢!/3 during a late-
stage regime when the presence of a cluster has estab-
lished a depletion of either the supersaturation of the
continuous phase or the number density of other clusters
in the cluster’s vicinity. Recent works of Cumming et al.
[51] and Baumberger, Perrot, and Beysens [13] establish
the relevance to experiments of an earlier, “free-growth”
regime, where condensation occurs at essentially fixed su-
persaturation of the continuous phase. Of the most
relevance to our problem are two mechanisms that in-
volve shear flow. Baumberger, Perrot, and Beysens also
studied phase separation under steady shear of a water-
rich mixture of IBA and water with a composition very
close to that of our own mixture [13]. They find growth
of the clusters according to a power of St close to 0.685,
where S is the shear rate. From the equations that de-
scribe the transport of material to the clusters under the

TABLE II. Mechanisms of cluster growth in phase-

separating off-critical mixtures.
Typical
Mechanism Cluster radius value®

Lifshitz-Slyozov R =(0.053D ~&7¢)'/3 0.5 pm
condensation®
Free growth®¢ R=(2¢6D " t)!? 6.0
Brownian droplet R=(12¢£D ¢ ¢)!/3 1.8
coalescence®
Advection-
diffusion R=1.08(D~ /S)"/2(2¢St)°-%% 13.6

in a shear flow*®
Shear-induced
droplet coalescence
and breakup®

R <exp(¢St)— Ry =Ca . I' /7,5 16.7

#At time ¢ =30 s following a quench of depth 94 mK performed
on a mixture for which 7, — T, =32 mK and which is sheared
at a constant rate S=5s" 1.

bReference [4].

°Reference [13].

dReference [51].

“References [10], [12], and [49].

combined action of mass diffusion and advection in the
shear flow of the continuous phase, they derive a scaling
relation for R and ¢ in terms of D ™, S, and ¢ that col-
lapses their data taken in quenches of various depths and
at various shear rates. Here D ™ is the mass diffusivity in
the two-phase region. This advection-diffusion mecha-
nism is also expected to be effective during an early stage
where the decrease of the supersaturation of the continu-
ous phase may be small. The last cluster-growth mecha-
nism we consider, shear-induced coalescence and burst, is
expected to dominate in the opposite limit, when the
volume fraction of the new phase actually present has
nearly attained its equilibrium value ¢ and the supersa-
turation of the continuous phase is therefore nearly zero.
Onuki has argued that, because of the relative motions
which the clusters undergo as a result of the gradients in
the fluid velocity, collisions of clusters are greatly
enhanced and produce extremely rapid cluster growth by
coalescence according to R(z)~exp(4St) [10]. In this
way the clusters can quickly attain the radius
R, =Ca.T" /7S, whereupon they are ruptured by the
viscous forces of the shear flow [10,49]. Here, Ca, is the
critical value of the capillary number, which is a function
of the tensorial character of the flow and the ratio A of
the viscosities of the liquids forming the droplet and the
continuous phase. Its value is 0.35 for the case of equal
viscosities and a Couette flow [49]. A stationary distribu-
tion of cluster sizes narrowly peaked near R, is pre-
dicted to result in this process. Although some aspects of
the theory of Onuki may be questionable [52], quantita-
tive experimental confirmations of the picture described
above have been provided by a number of experiments on
stationary-process nucleation in supercooled binary
liquid mixtures under shear [12].

In calculating values of the cluster radius R(z) from
the two shear-dependent cluster-growth laws, we have set
the shear rate S to a constant value of 5 s~ !. This value
represents the typical amplitude of the shear rate near the
middle of our quench experiments on the IBA-rich mix-
ture, but our shear rate also oscillates. The oscillation
may certainly have a significant effect on the advection-
diffusion or shear-induced coalescence processes, but we
have not attempted to estimate the effect. We similarly
calculate Ry, using S =5 s, although it is known that
droplet burst is affected by the history of the flow in the
case where the flow is time dependent. The value of Ca,
given above applies to a steady flow at a shear rate which
has been increased quasistatically [49].

In Figs. 11 and 12, we compare the viscosity and elas-
tic shear modulus of the two phase-separating, off-critical
mixtures with the predicted properties of dilute emul-
sions. The viscosity-enhancement ratio (7—,)/n, and
the elastic modulus G are plotted as functions of the
volume fraction ¢. Here, 7 and G are time averages of
the values of 7 and G measured during the latter part of
the quench experiments 22 s<7=<36 s when the time
dependence of the properties is weak. The viscosity 7, of
the majority phase in its equilibrium state is calculated
from the expressions appearing in Table I. The measured
viscous enhancement ratio (77 —m;)/7, is compared with
the Taylor expression 7f,¢/4 [see Eq. (30)] which does
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not contain the droplet radius R. Two curves computed
from the low-frequency limit of the elasticity modulus
given in Eq. (38) are shown for comparison with the mea-
sured values of G. The solid curves have been calculated
with the values of the droplet radius R prescribed by the
advection-diffusion expression R(1)=1.08(D" /
S)172(2481)%9%5, with S =5 s~ ! and the time ¢ set equal to
t=30s. The dashed curve has been calculated with R set
equal to Ry, =0.35T /7S, as may result under the
shear-induced coalescence and burst processes. The plots
show that for both mixtures the measured viscosity
enhancement (7—,)/7, is approximately linear in the
equilibrium minority-phase volume fraction ¢. In the
case of the water-rich mixture, the agreement between
the measurements and Taylor’s expression for the
effective viscosity of an emulsion is good. The viscosity
enhancements we measure for the IBA-rich mixture are
about twice the theoretical ones, however. The experi-
mental values of the time-averaged elastic shear modulus
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FIG. 11. Reduced interfacial viscosity (§—n,)/7, and elas-
tic shear modulus G of a phase-separating IBA-rich mixture as
functions of the volume fraction ¢ of the equilibrium minority
phase in the two-phase state. The viscosity of the equilibrium
majority phase is 77;,. The quantities 7j and G are time averages
over the interval 22 s <t <36 s of the measured time-dependent
values of the viscosity 7 and elastic modulus G. The curve
shown in the plot of viscosity represents Taylor’s expression for
the viscosity of a dilute emulsion. The curves shown in the plot
of the shear modulus have been calculated from Oldroyd’s
theory for a dilute emulsion. For the solid curve, we have set
the droplet radius to the cluster radius calculated at the time
t=30 s under cluster growth by an advection-diffusion mecha-
nism described in Ref. [13]. The dashed curve corresponds to a
droplet radius equal to the maximum radius Ry, that a droplet
may have without being burst by the shear flow.
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FIG. 12. Same treatment as that of Fig. 11 of results obtained
on a water-rich mixture.

G for this mixture are also about two times larger than
the calculated ones. The data are noisy, but there is a
clear rounding-off trend at higher volume fractions. The
shape bears some resemblance to that of the theoretical
curve which we calculate with the droplet radius R
prescribed by the formula that expresses growth by the
advection-diffusion process. The rounding off occurs be-
cause, with this mechanism of growth, the quench-depth
dependence of droplet growth is weaker than that of the
interfacial tension I'. In calculating the dashed curve we
set R =R, <T; a nearly linear dependence of G on ¢
then results. The near coincidence over part of the range
of ¢ of the two theoretical curves for G in Fig. 11 is for-
tuitous since the growth mechanisms are quite different,
but it indicates that conditions during the experiments
are such as to produce droplets whose sizes are of the or-
der of Ry, even if only by the comparatively slower
advection-diffusion = growth = mechanism. Taking
R =R, we predict about the same values for G for the
water-rich mixture as for the IBA-rich mixture, while,
with R calculated from the advection-diffusion expres-
sion, we predict values for G smaller by a factor of about
3. However, the smaller theoretical values are still incon-
sistent with our observation of G=0 within a resolution
of about 0.02 mPa for the water-rich mixture.

V. DISCUSSION AND CONCLUSIONS

We have measured the effective viscosity 77 and elastic
shear modulus G of the critical and two off-critical mix-
tures of isobutyric acid (IBA) and water during the pro-
cess of phase separation. Qualitatively different behavior
was observed in each case. Quenches of the critical mix-
ture produced rapidly decaying values of the viscosity
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enhancement A7n and the shear modulus G. We showed
that this behavior is predicted by a phenomenological
theory of the stress generated by a coarsening bicontinu-
ous interface subjected to shear [20]. The theory allows
us to attribute the observed rapid decay of An and G to
the rapid, capillary-driven decrease of the amount of in-
terfacial surface in the system. By appropriately choos-
ing three phenomenological parameters, we were able to
obtain satisfactory agreement between the theory and the
measurements. Two of the parameters are related to
quantities that can be obtained in light-scattering experi-
ments performed with mixtures undergoing phase separa-
tion while macroscopically at rest. We showed how in-
formation about the structure of domains could in princi-
ple be obtained from a comparison of these related pa-
rameters.

We found that the two off-critical mixtures, one of
which was rich in water and the other rich in IBA, exhib-
ited similar viscous behavior during phase separation. In
contrast to the decreasing viscosities of the critical mix-
ture, both off-critical mixtures produced viscosity
enhancements essentially independent of time for times
up to about 40 s, the duration of our quench measure-
ments. The enhancements increased linearly with the
volume fraction of the new phase, which is a function of
the depth of the quench. The two mixtures were striking-
ly unlike in their elastic behavior, however, since the
IBA-rich mixture produced values of G that increased as
a function of time since the moment of the quench, while
the water-rich mixture showed no elasticity at all, within
the resolution of our measurement.

We find, then, that of the rheological behavior during
phase separation of the critical and off-critical mixtures,
it is the latter that has proved the more difficult to ex-
plain quantitatively. Although the domain morphology
that results after a quench of the critical mixture is more
complicated than with which results after a quench of an
off-critical one, many details of the intricate configuration
of the domains are integrated out in the construction of
the interface tensor q,g, which governs the macroscopic
stress. A phenomenological equation of motion for the
evolution of g,z has then proved adequate to predict the
observed rheological behavior. On the other hand, the
appearance of the new phase in the form of relatively iso-
lated and compact clusters, as is presumably the case dur-
ing the phase separation of off-critical mixtures, invites us
to attempt a more detailed, microscopic level of descrip-
tion. But this has proved to be difficult. Our experiments
show that the behavior of ideal emulsions, in which the
rheological behavior is entirely due to the regions of
higher shear rate that result from the fluid flow around
and inside the spherical, noninteracting droplets, is at
least relevant in order of magnitude to the behavior of
off-critical mixtures undergoing phase separation under
shear. However, refinement of this picture to the level of
a quantitative theory will require significant advances in
our understanding of several problems. Some of these are
nucleation and cluster-growth dynamics in phase-
separating liquid mixtures under shear flows, the defor-
mation and burst of droplets in time-dependent shear
flows, droplet coalescence, and the bulk behavior, via a

constitutive equation, of a suspension of droplets under
conditions of high droplet deformation, burst, and coales-
cence. Each of these presents in its own right a formid-
able problem.

We conclude with some more speculative comments on
the two puzzling results of the experiments on off-critical
mixtures. These are the observation of a negative elastic
shear modulus immediately following deep quenches of
the IBA-rich mixture, and the strikingly unlike behavior
with regard to elasticity of the IBA-rich and water-rich
mixtures.

A negative elastic modulus describes a material that,
under deformation, generates a stress that acts to increase
the deformation. Now this situation can come about in
theoretical models. For example, Khan and Armstrong
have calculated the stress-strain curve of a concentrated
two-dimensional foam consisting of hexagonal bubbles
with rounded corners [53]. The slope of the curve be-
comes negative when the strain is made so large that a
new equilibrium configuration is related to the original
one by a sideways shift of a layer of bubbles by the inter-
stitial spacing. A real material, however, reaches a yield
point and flows and does not exhibit negative elasticity
under a static strain. Our observation of G <0 is
sufficiently surprising that it is natural to return to our
raw experimental observation and consider whether
another interpretation might be more physical. Here, the
raw observation is that during the first few oscillations of
the disk that occur after deep quenches of the IBA-rich
mixture, the period T is too large in comparison with the
damping A in the sense that 7/T,>1+4+A, where
T /Ty=1+A is the consistency relation that yields G =0
for a purely viscous fluid [54]. The consistency relation
expresses the fact that the time-varying drag exerted by
the fluid on the disk has two components of approximate-
ly equal magnitude, one in phase with the negative of the
disk’s angular velocity —al(¢), and the other in phase
with the disk’s angular position a(¢). This second com-
ponent acts in opposition to the restoring torque —«a(t)
supplied by the suspension wire with spring constant
and results in the increase of the period with respect to
the period in vacuo T,. The existence of the second drag
component is due to the fluid’s inertia. In oscillating-
body viscometry, it is in fact conventional to attribute the
increase of the period to an increase of the disk’s moment
of inertia by that of a shell of fluid that moves with the
disk as a rigid body. With this concept in mind, it is nat-
ural to try to account for the even further increase of the
period during the early times of our deep-quench experi-
ments on the IBA-rich mixture by assuming a further
contribution of the fluid to the disk’s moment of inertia,
rather than by attributing negative elasticity to the fluid.
The picture we have in mind here is of droplets of the
new phase that stick to the disk and therefore increase
the period by adding to the moment of inertia. However,
simple estimates show that this effect is small. For exam-
ple, the disk’s oscillation period would be increased only
by about 0.8 ms due to the added moment of inertia of a
shell of fluid of thickness 10 um moving rigidly with the
disk. On the other hand, the initial value of the elastic
shear modulus G = —0.48 mPa which we referred to time
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t=4 s after a quench of depth Q=172 mK of the IBA-
rich mixture (Fig. 11) corresponds to a value of the
period longer by 6.7 ms than the value which would yield
G =0, given the same value of the damping A.

We have also estimated the modification to the drag
exerted by the fluid on the oscillating disk in the case
where a thin, smooth layer of fluid with viscosity 7,
separates the disk from the bulk of the fluid whose viscos-
ity has a complex value #*. Such a layer is supposed to
undergo a shearing motion rather than the rigid-body
motion considered above and introduces small changes in
the amplitude and phase of the oscillating drag which are
of the order L /|8*|, where L is the thickness of the layer
and |6*|~1 mm is the boundary-layer thickness of the
flow. Thus, a layer thickness much larger than a typical
droplet size of R =10 um (see Table II) would have to be
supposed to explain the initially negative value of G on
the basis of either a sheared or rigidly moving layer.
Moreover, we should have to suppose that the layer
thickness decreased in time. We consider this situation
to be unlikely, although we are aware of a recent experi-
ment by Bodensohn and Goldburg in which thick wetting
layers of decreasing thickness formed during the phase
separation of a critical mixture confined between closely
spaced plates [55]. Our own experiments with the critical
IBA-plus-water mixture do not show evidence of this
effect, which depends essentially on the confined
geometry. During the phase separation of a critical mix-
ture near a wall, but in an otherwise unconfined
geometry, the thickness of the wetting layer is of the or-
der of the characteristic size of domains in the bulk and
increases, as has been observed in an experiment reported
by Guenoun, Beysens, and Robert [56]. We are, there-
fore, persuaded that the negative values of the elastic
shear modulus which we infer from the period and damp-
ing of the disk’s motion truly describe the stress-strain re-
lation of the bulk material. We speculate that the nega-
tive elasticity could come about during droplet coales-
cence or during the slipping of droplets past each other in
a manner similar to the behavior of the model foam [53].

We turn finally to the unlike behavior of the two off-
critical mixtures. Their mass fractions X =0.426 and
0.343, respectively, for the IBA- and water-rich mixtures,
differ from the critical composition X, =0.388 by roughly
equal amounts. We would therefore expect the phase-
separation processes in the two mixtures following
quenches of similar depths to be similar. The typical
magnitude, say G =0.5 mPa, of the elastic shear modulus
at times near ¢ =30 s which we measure during the phase
separation of the IBA-rich mixture implies through Eq.
(38) a value of about 20 um for the droplet radius R. A
value of this order is consistent with what we predict for
clusters of the new phase growing by the advection-
diffusion process or maintained at the breakup radius
R, .. by the shear-induced coalescence and burst pro-
cess. Now we would expect these processes to be equally
effective in the phase separation of the water-rich mix-
ture. But the experimental result G =0+0.02 mPa sets
through Eq. (38) a limit of about 3 um for the droplet ra-
dius. Our experiments therefore suggest that the phase-
separation process could be qualitatively different for

mixtures symmetrically placed on opposite sides of the
phase diagram.

An obvious alternative explanation is that the unlike
rheological behavior of the two mixtures has to do with
the differing tendencies of the new phase to wet the sur-
face of the disk. In fact, the wetting properties of the
suspended phase are known to have important effects on
the measured behavior of emulsions. For example, Prin-
cen measured the viscosity and static-shear elasticity
modulus of concentrated oil-in-water emulsions using a
rotating-cylinder rheometer [57]. He found that the
behavior was erratic in the case that the rheometer’s con-
centric cylinders were made of a hydrophobic material
(stainless steel) which was wet by the oil droplets. Repro-
ducible results were obtained with cylinders made of a
hydrophilic material (pyrex). Then, however, important
corrections had to be made for a slipping effect in which
a large part of the decrease of the fluid velocity between
the rotating and stationary cylinders occurred in thin,
watery layers at the cylinder surfaces. Now the disk of
our viscometer is made of Hastelloy C-276, which is wet
by IBA and not wet by water. Therefore, if analogous
wetting effects occur in our system, slipping should be ex-
pected during the phase separation of the IBA-rich mix-
ture, when the disk’s surface may repel the water-rich
clusters. But in fact it is with this mixture that we see the
elasticity and the stronger viscosity enhancements, and
this behavior does not suggest slipping. On the other
hand, during the phase separation of the water-rich mix-
ture, a smooth layer of the new, IBA-rich phase with a
thickness comparable to the radius of the clusters occur-
ring in the bulk may form on the surface of the disk. As
we have mentioned, a thin, smooth layer has a small
effect on the drag which the fluid exerts on the disk.
These considerations lead us to suspect that the unlike
behavior of the two off-critical mixtures is not caused by
wetting effects, but rather to some aspect of cluster
growth, burst, or coalescence in the bulk of the samples
that is dissimilar in quenches of the same depth per-
formed on mixtures whose compositions are symmetrical-
ly located about the critical composition.
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APPENDIX

Because the unknown 7* appears in Eq. (8) in the form
8*=(n*/pwy)'’?, we introduce unknowns u and w
defined by (9*)!"2=u +iw. According to standard usage
in oscillating-body viscometry, we write © =T, /T for the
ratio of the period in vacuo to the period measured with
the fluid present, and we write the required powers of the
measured complex number s =(—A+i)O as s!/?=x +iy
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and s*/>=—H,+iH, [41]. Some manipulation of Eq. (8)
then yields

200 =k (Hu —H,w)—k,0(u?—w?—2Auw)
—k;y[y (w3 —3uw?)+x3u*w—w?)],
1—0%+(A0)=k,(H,u +H,w)
—k,O[A(u?—w?)+2uw]

(AD)

+ks[x(u?=3uw?)—yBuiw—w?)],

(A2)
where
o 172
x= —2—[(A2+1)2—A] , (A3)
y=%, (A4)
3
H,=36x/2— |— | , (A5)
2x
H,=30%/4x—x?, (A6)
R
k= (1442 | 224y (A7)

R

k,=B2=02 (A8)
oh
R

ky=cPodys (A9)
oh

Here B and C are combinations of the disk radius R, and
half-thickness %  defined in Eq. (7) and
X=(Ty/2mpRJ)!"2. Note also that here the meanings of
the symbols x and y differ from their meanings in Sec.
IIIB. With © and A as obtained by measurement, Egs.
(A1) and (A2) are solved simultaneously for ¥ and w. The
real and imaginary parts of the complex viscosity are
then found from

n=(u?—w?), n'=—2uw. (A10)

Finally, " and 7"’ are related to the viscosity 7 and elas-
tic shear modulus G through Eq. (14). Our equations are
a generalization to include end and edge effects of the
working equations for an infinitely long oscillating-rod
rheometer that have been presented by Oka [42].

As has been discussed above, in the case where the disk
is surrounded by a Newtonian fluid, a consistency rela-
tion involving only the fluid density and instrumental
constants holds between the period T and the damping A
such that one may be calculated from the other. It is im-
plicitly defined by eliminating of u between Egs. (A1) and
(A2) after w has been set to zero.
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